SEMI-EMPIRICAL MOLECULAR ORBITAL CALCULATIONS ON OCTA-HEDRAL COMPLEXES: [TiCl₆]^{2-*}

L. OLEARI, E. TONDELLO, L. DI SIPIO AND G. DE MICHELIS

Istituto di Chimica Generale, University of Padova (Italy)

A. INTRODUCTION

In several previous papers¹⁻³ we applied the semi-empirical molecular orbital (MO) theory of Pople-Pariser-Parr, which works rather well for unsaturated hydrocarbons, to tetroxo-anions and tetrahalides of the first transition metal series. On the basis of our rather satisfying results, we thought it useful to extend such an investigation to octahedral coordination compounds with the purpose on the one hand, of improving the semi-empirical criteria for evaluation of the integrals and, on the other, of obtaining useful chemical information, such as the order of levels, the charge distribution and the assignment of the observed bands.

First, in a series of studies, we have examined the $TiCl_6^{2-}$ ion as it is a closed shell system (the central metal ion is d^0) and, therefore, easier to treat with the Roothaan SCF procedure⁴.

In addition some comparison can be made between the calculated transitions and the spectrum observed for Ti^{IV} in 12 M HCl solutions⁵.

B. OUTLINE OF THE CALCULATIONS

The calculation procedure is substantially that described in previous papers^{1,2}. The MO-LCAO approximation has been used by considering only the 3d, 4s and 4p atomic orbitals (AO) on titanium and 3p AO's on chlorine atoms. The 3s AO's on Cl atoms have been neglected since in our previous calculations⁶ carried out on TiCl and TiCl₄, we found that this is a sufficiently good approximation.

The geometry of the molecule is that of a regular octahedron with a bond length⁷ of 2.35 Å. The coordinate system, the numbering and orientation of the ligand orbitals are shown in Fig. 1. The symmetry orbitals, according to the point symmetry group O_h , are given in Table 1.

^{*} This work has been supported by the Italian National Research Council, Centro Nazionale di Chimica delle Radiazioni e dei Radioelementi, Sezione di Padova.

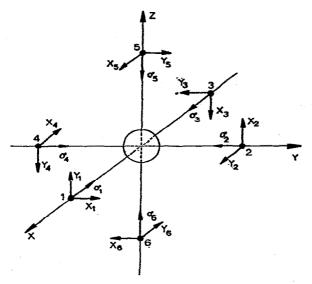


Fig. 1. Coordinate systems, numbering and orientation of the ligand orbitals.

TABLE 1 SYMMETRY ORBITALS FOR O_h MOLECULES

Irreducible	Metal	Ligands					
representations		p_{σ}	P_{π}				
A _{1g} E _g	s d_1 d_1 d_1	$\frac{1/\sqrt{6(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)}}{\frac{1}{2}\sqrt{3(-\sigma_1 - \sigma_2 - \sigma_3 - \sigma_4 + 2\sigma_5 + 2\sigma_6)}}$ $\frac{1}{2}(\sigma_1 - \sigma_3 + \sigma_3 - \sigma_4)$					
T_{1g}			$\frac{\frac{1}{2}(y_1+x_3-x_5-y_6)}{\frac{1}{2}(x_2+y_4-y_5-x_6)}$ $\frac{1}{2}(x_1-y_2+y_3-x_4)$				
$T_{1_{tt}}$	$egin{array}{l} \mathbf{p_x} \\ \mathbf{p_y} \\ \mathbf{p_z} \end{array}$	$ \frac{1/\sqrt{2(\sigma_1 - \sigma_3)}}{1/\sqrt{2(\sigma_2 - \sigma_4)}} 1/\sqrt{2(\sigma_5 - \sigma_6)} $	$\frac{\frac{1}{2}(y_2-x_4+x_5-y_6)}{\frac{1}{2}(x_1-y_3+y_5-x_6)}$ $\frac{1}{2}(y_1+x_2-x_3-y_4)$				
T_{2g}	d _{zx} d _{zy} d _{xy}		$\frac{1}{2}(y_1+x_3+x_5+y_6)$ $\frac{1}{2}(x_2+y_4+y_5+x_6)$ $\frac{1}{2}(x_1+y_2+y_3+x_4)$				
T_{2u}			$\frac{\frac{1}{2}(y_2 - x_4 - x_5 + y_6)}{\frac{1}{2}(x_1 - y_3 - y_5 + x_6)}$ $\frac{1}{2}(y_1 - x_2 - x_3 + y_4)$				

The ground state has been evaluated by means of an SCF calculation using the "zero differential overlap" approximation between AO's on different centres. Moreover, the energies of the allowed excitations from the ground state $(^{1}A_{1g})$ to the lowest excited states $(^{1}T_{1u})$ have been evaluated by means of a configuration interaction calculation (CI) extended to all mono-excited configurations.

The molecular integrals have been evaluated semi-empirically. The one-

centre integrals were calculated from the valence state energies⁸ and are reported in Tables 2 and 3. The two-centre coulomb repulsion integrals have been evaluated employing the uniformly charged sphere approximation⁹.

TABLE 2
SEMI-EMPIRICAL ONE-CENTRE INTEGRALS FOR CHLORINE (eV)

$g_{x,x} = g_{y,y} = g_z$ $g_{x,y} = g_{x,z} = g_y$ U_p C	

TABLE 3
SEMI-EMPIRICAL ONE-CENTRE INTEGRALS FOR TITANIUM (eV)

	q = 0	q = +1
$g_{z^{2},z^{3}} = g_{x^{2}-y^{2},x^{2}-y^{2}} = g_{zx,zx} = g_{zy,zy} = g_{xy,xy}$	8.20	12.50
$g_{zx,zy} = g_{zx,xy} = g_{zx,x^2-y^2} = g_{zy,xy} = g_{zy,x^2-y^2}$	7.29	11.10
g_{xy,x^2-y^2}	7.68	11.70
$g_{z^1,zx} = g_{z^1,zy}$	7.55	11.50
$g_{z^{2},xy} = g_{z^{1},x^{2}-y^{2}}$	7.16	10.90
62, xy 62, x-y 6	5.54	7.90
$g_{s,d}$	4.80	5.60
g _{5,5}	4.00	4.83
$g_{x,x} = g_{y,y} = g_{z,z}$	3.48	4.20
$g_{x,y} = g_{x,z} = g_{y,z}$	4.20	5.08
g _{s,p}	4.85	6.78
g_{z,z^1} $g_{z,zx} = g_{z,zy} = g_{x,xy} = g_{y,xy} = g_{x,zx} = g_{y,zy} = g_{x,x^1-y^2} = g_{y,x^1-y^2}$	4.80	6.66
$S_{x,xx} - S_{x,xy} - S_{x,xy} - S_{y,xy} - S_{x,xx} - S_{y,xy} - S_{x,xy} $	4.65	6.40
$g_{z,x^2-y^2} = g_{z,xy} = g_{x,zy} = g_{y,zx}$	4.70	6.43
$g_{x,z}^a = g_{y,z}^a$	-25.74	-36.32
$U_{\mathbf{d}}$	-22.63	-29.30
S	-17.73	-22.80
U _S U _p C	-28.56	-79.05

TABLE 4

OVERLAP INTEGRALS

	Control of the Contro
$S(4s_{M}, 3p_{\sigma L}) = .2229$	$S(3p_{\sigma L_1}, 3p_{\sigma L_2}) = .0498$
$S(4p_{\sigma M}, 3p_{\sigma L}) = .1852$	$S(3p_{\sigma L_1}, 3p_{\sigma L_4}) = .0171$
$S(4p_{\pi M}, 3p_{\pi L}) = .2218$	$S(3p_{\pi L1}, 3p_{\pi L2}) = .0214$
$S(3d_{\sigma M}, 3p_{\sigma L}) = .1599$	$S(3p_{\pi L1}, 3p_{\pi L4}) = .0035$
$S(3d_{\pi M}, 3p_{\pi L}) = .1137$	

The β integrals have been calculated by means of the relation:

$$\beta_{ii} = -\frac{1}{2}F(I_i + I_j)S_{ij}$$

where F = 1. The overlap integrals (Table 4) were evaluated using the following radial functions $^{10-12}$:

Coordin. Chem. Rev., 2 (1967) 45-51

Ti
$$R(3d) = 0.4391 \ \phi_3(4.55) + 0.7397 \ \phi_3(1.60)$$

 $R(4s) = -0.02231 \ \phi_1(21.40) + 0.07751 \ \phi_2(8.05) - 0.1985 \ \phi_3(3.64) + + 1.0164 \ \phi_4(1.20)$
 $R(4p) = 0.00495 \ \phi_2(8.80) - 0.01823 \ \phi_3(3.31) + 1.00015 \ \phi_4(0.51)$
Cl $R(3p) = -0.01295 \ \phi_2(13.79) - 0.03983 \ \phi_2(8.8355) - 0.26254 \ \phi_2(5.3987) + + 0.12225 \ \phi_3(4.0186) + 0.35932 \ \phi_3(2.4367) + 0.56879 \ \phi_3(1.738) + + 0.09941 \ \phi_3(0.872)$

where

$$\phi_n(\mu) = N r^{n-1} \exp(-\mu r)$$

Finally, all the neutral penetration integrals have been neglected considering the rather large bond length. This approximation was also supported by the results of the calculations⁶ on TiCl and TiCl₄.

All the calculations (SCF for the ground state and CI for the excited states) were carried out twice: the first time using semi-empirical integrals corresponding to a zero oxidation state of titanium (q = 0), and the second, using the semi-empirical integrals which correspond to an oxidation state of +1 (q = +1).

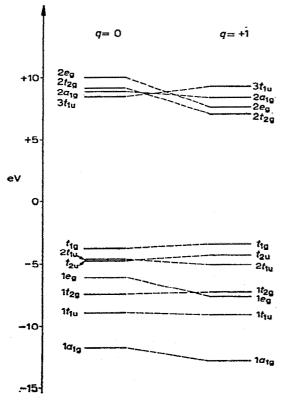


Fig. 2. MO energy levels.

C. RESULTS AND DISCUSSION

For each calculation the following data are reported:

- (a) MO energy levels (Fig. 2)
- (b) SCF eigenvectors (Table 5)
- (c) Total gross population analysis (Table 6)
- (d) CI eigenvectors and excitation energies (Table 7)

In Fig. 2 the levels scheme, obtained on the basis of the SCF eigenvalues, is shown. The order for q=+1 is substantially in agreement with that of other authors and is supported by the experimental data^{13,14}. In particular the first empty MO's are of T_{2g} and E_g symmetry, precisely as required by the Crystal Field Theory. The order for q=0 is rather incongruous, because the $3t_{2u}$ and $2a_{1g}$ MO energies are slightly lower than those of $2t_{2g}$ and $2e_g$. Probably this arises through insufficient accuracy in the Ti one centre integrals.

With regard to the filled MO's, in both cases the $1a_{1g}$, $1t_{1u}$, $1e_g$ and $1t_{2g}$ MO's give a positive contribution to the bonding, whereas the $2t_{1u}$ MO's have a

TABLE 5 EIGENVALUES E (eV) AND EIGENVECTORS

MO E(eV)	E(eV)	q = 0)				E(eV)	q = -				
		d	s	p	P_{σ}	P_{π}		d	s	р	p_{σ}	p_{π}
1 <i>a</i> _{1g}	-11.79		.389		.922		-12.86	· -	.392		.920	
$1t_{1u}$	-9.00			.375	.559	.739	-9.20			.358	.669	.651
le _g	-6.14	.331			.944		-7.62	.416			.909	
1 t2g	-7.49	.236				.972	-7.33	.299				.954
$2t_{1u}^{-g}$	-4.75			.045	808	.588	-5.10			.111	723	.682
t _{zu}	-4.79					1	-4.40					1
t _{1g}	-3.82					1	-3.46					1
2t2g	9.17	.972				236	7.07	.954				-2.99
2eg	10.00	.944			331		7.60	.909			416	
$2a_{1g}^{\mathbf{E}}$	8.84		.922		−.389		8.38		.920		392	
$3t_{1u}$	8.49			.926	187	328	9.26			.927	172	332

TABLE 6
TOTAL GROSS POPULATION AND OXIDATION STATE

		q = 0	q = +1
N(4s _M)		.299	.306
N(4p _M)		.285	.282
$N(3d_{x^{1},M}) = N(3d_{x^{2}-y^{2},M})$.217	.342
$N(3d_{xx,M}) = N(3d_{xx,M}) = N(3d_{xx,M})$.112	.178
$V(3p_{\sigma,L})$		1.844	1.805
$V(3p_{\pi,L})$		1.918	1.900
Oxidation	a	2.076	1.630
State	ь	056	644

Coordin. Chem. Rev., 2 (1967) 45-51

TABLE	7			
RESULTS	OF THE	CONFIGURATIONAL	INTERACTION	CALCULATIONS

		q = 0					q = +1			
	\mathbf{A}_{j}	CI eige.	nvectors		CA-Pallacenson	A	CI eige	nvectors		
$\overline{1a_{1g} \rightarrow 3t_{1u}}$	16.16	013	012	.007	005	17.33	007	.003	.002	.010
$1t_{1u} \rightarrow 2a_{1g}$	13.14	004	027	.016	009	12.38	020	003	009	.026
$2t_{1u} \rightarrow 2a_{1g}$	8.87	.067	017	460	.675	8.26	.043	002	080	109
$1e_g \rightarrow 3t_{1u}$	10.31	003	-0.47	.009	049	11.63	012	006	.006	.024
$1r_{\rm in} \rightarrow 2e_{\rm g}$	13.52	026	070	078	+.007	10.75	114	019	.002	103
$2t_{1u} \rightarrow 2e_{g}$	8.84	.119	.469	.592	103	6.69	.519	.111	.167	.777
$t_{2u} \rightarrow 2e_{g}$	9.02	.018	121	031	.097	6.37	096	070	945	.294
$t_{1g} \rightarrow 3t_{1g}$	8.42	.186	857	.297	118	8.20	021	020	130	245
$1t_{1n} \rightarrow 2t_{2g}$	12.68	061	016	.088	.088	10.25	.013	.034	.000	.022
$2t_{1u} \rightarrow 2t_{2g}$	8.01	.898	.115	303	275	6.22	.395	909	006	118
$1t_{2g} \rightarrow 3t_{1g}$	12,06	.008	094	.042	004	11.89	006	001	023	.034
$t_{2u} \rightarrow 2t_{2g}$	8.50	367	002	491	651	6.31	741	393	.236	.459
B CI eigenv	values	7.87	8.11	8.54	8.64		6.02	6.23	6.33	6.66

slight antibonding character and the t_{2u} and t_{1g} MO's have a non-bonding character, being completely localized on the chlorine atoms.

The excitation energies obtained by a CI calculation are reported in Table 7. The data of columns A are the diagonal elements of the CI secular equation (i.e., the excitation energies of each single configuration) and the data of row B are the calculated excitation energies.

The results for q=+1 agree better with the observed spectrum of $\mathrm{TiCl_6}^{2-}$ in 12 M HCl solutions, in which the first observed band appears at 45,00 cm⁻¹ (5.58 eV). The results for q=0 give high transition energies.

The results can be interpolated in such a way that the oxidation state of Ti obtained from the calculations is equal to that to which the semi-empirical molecular integrals correspond. However, evaluating the oxidation state of Ti by relation¹:

$$q_{k} = Z_{k} - \sum_{r_{k}} n_{r_{k}}$$

(where n_{r_k} is the occupation number of the χ_{r_k} AO on atom k), different results are obtained according to whether n_{r_k} is considered equal to the diagonal density matrix $D_{r_k r_k}$ (row a in Table VI) or as given by the expression (row b in Table 6)¹:

$$n_{r_k} = D_{r_k r_k} + \sum_{h \neq k} \sum_{s_h} D_{r_k s_h} S_{r_k s_h}$$

Using the graphical procedure described in a previous paper¹, the following values, corresponding to the two different criteria, are obtained: q = +1.44 and q = -0.03.

With q = 1.44 we obtain a good agreement with the first experimentally observed band to which we can assign three different one-electron transitions:

$$t_{2u} \rightarrow 2t_{2g}$$
 $2t_{1u} \rightarrow 2t_{2g}$ $t_{2u} \rightarrow 2e_g$

With the second criterion, q = -0.03, we have a discrepancy with the observed band but a better agreement with the Pauling electroneutrality principle.

REFERENCES

- 1 L. OLEARI, L. DI SIPIO AND G. DE MICHELIS, Mol. Phys., 10 (1966) 111.
- 2 G. DE MICHELIS, L. OLEARI AND L. DI SIPIO, Coordin. Chem. Rev., 1 (1966) 18.
- 3 L. DI SIPIO, G. DE MICHELIS, L. OLEARI AND E. TONDELLO, Gazz. Chim. Ital., 96 (1966) 1775.
- 4 C. C. J. ROOTHAAN, Rev. Mod. Phys., 23 (1951) 69.
- 5 C. K. JØRGENSEN, Absorption spectra and chemical bonding in complexes, Pergamon Press, London, 1962.
- 6 L. DI SIPIO, G. DE MICHELIS, L. OLEARI AND E. TONDELLO, Gazz. Chim. Ital., in press; Proc. 9th Intern. Conf. Coordin. Chem., (1966) 124.
- 7 G. ENGEL, Z. Krist., 90 (1935) 341.
- 8 L. Oleari, L. Di Sipio and G. De Michelis, Mol. Phys., 10 (1966) 97.
- 9 L. Oleari, L. Di Sipio and G. De Michelis, Coordin. Chem. Rev., 1 (1966) 24.
- 10 J. W. RICHARDSON, W. C. NIEUWPOORT, R. R. POWELL AND W. F. EDGELL, J. Chem. Phys., 36 (1962) 1057.
- 11 J. W. RICHARDSON, R. R. POWELL AND W. C. NIEUWPOORT, J. Chem. Phys., 38 (1963) 796.
- 12 R. E. WATSON AND A. J. FREEMAN, Phys. Rev., 123 (1961) 521.
- 13 C. J. BALLHAUSEN AND H. B. GRAY, Molecular Orbital Theory, Benjamin, New York. (1964) p. 128.
- 14 H. D. BEDON, S. H. HORNER AND S. Y. TYREE JR., Inorg. Chem., 3 (1964) 647.

Coordin. Chem. Rev., 2 (1967) 45-51